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Summary 
In this paper I present a spreadsheet that 
implements the spatial surveillance pri-
oritization methodology developed by 
Hauser and McCarthy (2009). They couch 
surveillance planning within a cost-
benefi t framework to identify both how 
much investment is justifi able to detect a 
weed and how that investment should be 
distributed across a heterogeneous land-
scape. The methodology partitions the 
landscape into homogenous sites with 
the optimal allocation depending on the 
probability that the weed is present, the 
ease of weed detection, and the benefi ts 
of weed detection at each site. A surveil-
lance plan can be calculated for an arbi-
trarily large number of sites, limited only 
by the spreadsheet’s row capacity.

Introduction
Early detection of and response to weeds 
is crucial for their feasible eradication or 
containment (Panetta and Timmins 2004, 
Cacho et al. 2006, 2008). However it is only 
recently that the cost of surveillance has 
been traded against its inherent conse-
quences, such as the probability of suc-
cessful eradication or the damage caused 
by the weed (Regan et al. 2006, Mehta et al. 
2007, Bogich et al. 2008, Rout et al. 2009). 
Increased investment in surveillance is ex-
pected to increase the proportion of weeds 
detected and thus, decrease the impact of 
the weed. Though the rate of weed detec-
tion is rarely well understood, these stud-
ies highlight its importance for planning 
cost-effective surveillance; furthermore, 
methods exist to estimate detection rates 
(Garrard et al. 2008).

Hauser and McCarthy (2009) model 
the surveillance of a weed that is thought 
to be at a low density in a heterogenous 
landscape. In such circumstances, strate-
gic planning is vital for identifying where 
and how much surveillance effort is jus-
tifi ed. By partitioning the landscape into 
homogeneous sites, Hauser and McCarthy 
determine the survey intensity at each site 
that (A) optimally trades the surveillance 
cost against the expected benefi ts of early 
detection, and (B) minimizes expected 
weed impact subject to a fi xed surveillance 
budget.

Although Hauser and McCarthy’s 
equations appear complicated, it is possi-
ble to implement them in a spreadsheet to 

obtain the optimal solution. In this paper I 
present such a spreadsheet.

Materials and methods
Hauser and McCarthy (2009) modelled a 
heterogeneous landscape as set of n con-
tiguous sites, each of equal area, with the 
weed being either present or absent within 
each site. Each site can be searched, with 
the probability of detecting the weed de-
pending on the presence or absence of the 
weed, the search effort invested, and the 
local terrain. This search effort incurs a 
cost. Weed detections trigger control ef-
forts in the neighbourhood of the incur-
sion, which may continue over some time. 
In this way, weed detections also incur a 
cost. The failure to detect a weed in some 
sites is expected to incur the greatest costs 
of all, given that the weed is expected to 
spread and cause further damage before 
being detected and controlled at some 
later date.

Selecting an objective
Hauser and McCarthy (2009) consider two 
surveillance planning scenarios. First, they 
assume that the impacts of the weed can 
be measured in the same currency as sur-
veillance effort. In this case it is possible 
to identify an optimal trade-off between 
the surveillance costs and weed impacts 
(objective A); as surveillance investment 
increases, we expect successful weed de-
tections to increase and weed impacts to 
decrease.

The second scenario assumes that a 
non-negotiable surveillance budget is 
available; then the objective is to distribute 
that budget amongst the n sites such that 
the expected weed impacts are minimized 
(objective B). In this scenario it is not 
necessary that the surveillance costs and 
weed impacts be expressed in the same 
currency, and it is possible to calculate the 
expected impacts under a range of budg-
ets to assess the trade-off between unlike 
currencies. 

Partitioning a landscape into sites
To maintain consistency of results, Hauser 
and McCarthy’s model requires that all 
sites be of the same area. Thus, dividing 
the landscape into a square grid can be 
convenient. It is important to select an 
appropriate spatial scale upon which to 
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plan surveillance. This model assumes the 
size of a single weed infestation is sub-
stantially smaller than the size of the site. 
However, it is also important that sites 
are suffi ciently small to capture variation 
in habitat suitability, search terrain, and 
value across the landscape. 

For example, Hauser and McCarthy 
(2009) used a 20 m × 20 m grid to defi ne 
sites in their case study of orange hawk-
weed surveillance on the Bogong High 
Plains of Victoria. This was the scale at 
which input data (vegetation type, pre-
dicted probability of weed occurrence) 
were provided. Furthermore, individual 
orange hawkweed infestations on the 
High Plains were expected to cover no 
more than 5 m2, less than 2% of the area 
of one site. If infestations were expected 
to cover a substantially larger area (say, 
100 m2) then the input data could be ag-
gregated to defi ne larger sites (say, 100 m 
× 100 m), such that the ratio of expected 
infestation area to site area is small.

The probability of weed presence
Hauser and McCarthy’s model supports 
the common intuition that surveillance 
should be conducted where the weed is 
most likely to be. Thus, an effi cient surveil-
lance plan requires a predicted probability 
of weed presence at each site. These prob-
abilities should be expressed as values 
between 0 and 1, with 0 indicating that 
weed presence is impossible (surveil-
lance effort will never be allocated to such 
a site) and 1 indicating that the weed is 
known with certainty to be present at the 
site. These probabilities can be estimated 
subjectively, though several authors have 
developed models that predict the prob-
ability of weed, pest or disease presence 
over a landscape (Buchan and Padilla 
2000, Underwood et al. 2004, Inglis et al. 
2006, Williams et al. 2008). The predicted 
probability of weed presence in each site 
should take into account factors such as 
habitat suitability, possible dispersal from 
known weed incursions, and any history 
of weed presence within the site.

Weed detectability
The probability of detecting the weed in a 
site depends on the presence or absence of 
the weed, the search effort invested, and 
the local terrain. Hauser and McCarthy 
assume that when a weed is present at a 
site, the probability of failing to detect an 
infestation declines exponentially with 
surveillance effort. The rate of decline may 
vary from site to site; that is, some sites 
may be more diffi cult to search than others 
due to differences in terrain. To refl ect this 
variation, a search effi ciency parameter, 
λi, must be estimated for each site. The pa-
rameter must be non-negative, with λi = 0 
indicating that it is impossible to detect the 
weed at site i using the given surveillance 
method, and large values of λi indicating 

that surveillance can detect the weed at 
site i with high effi ciency.

Garrard et al. (2008) present an experi-
mental method for estimating the detec-
tion function and search effi ciency param-
eter. The reciprocal of this parameter, 1/λi, 
can be interpreted as the mean amount of 
surveillance effort required to fi rst detect 
a weed at an infested site. For example, 
Hauser and McCarthy (2009) assumed 
that λi = 0.6020 per minute for shrubby 
sites. Thus, the average time taken to fi rst 
discover a weed at an infested shrubby 
20 m × 20 m site was estimated to be 1.66 
minutes. 

Hauser and McCarthy’s model is fl ex-
ible regarding the currency used to meas-
ure surveillance effort. Money invested, 
time spent searching, or the proportion of 
area covered may be appropriate curren-
cies for measuring weed search effort.

Detection benefi t
Differing land uses or biodiversity values 
across a landscape should infl uence the 
prioritization of surveillance effort. Some 
infested sites may also be easier or cheaper 
to treat than others. Thus, Hauser and Mc-
Carthy’s model requires a measure of the 
expected (mean) benefi ts of weed detec-
tion for each site. Some factors to consider 
in estimating these benefi ts are: 
• the likely spread and future damage 

that will be prevented by successfully 
detecting a weed during this survey;

• the saved costs of monitoring, control-
ling and/or eradicating this potential 
larger future incursion, less the cost of 
monitoring, controlling and/or eradi-
cating that is triggered by detecting a 
weed during this survey; and

• the ease or diffi culty of successfully 
treating an infestation in the neigh-
bourhood of one site compared to an-
other (based on accessibility, land use, 
etc.).

The benefi ts measured for a site may in-
clude costs that would be incurred outside 
the site in the instance that the incursion is 
not rapidly contained. Ideally, the measure 
of expected benefi ts would average over 
all possible invasion trajectories over the 
lifetime of the weed incursion although 
this will rarely be possible. An alterna-
tive approach is to consider the benefi ts of 
weed detection at a site between the cur-
rent and next planned survey.

Under objective A, the benefi ts must be 
measured in the same currency as surveil-
lance effort. Only then can the two com-
modities be directly traded to calculate an 
optimal surveillance investment. Under 
objective B, it is suffi cient that the relative 
benefi t between sites be estimated. How-
ever, a thorough estimate of surveillance 
benefi ts can allow the exploration of per-
formance over a range of different surveil-
lance budgets.

Surveillance budget (objective B only)
Objective B requires the specifi cation of 
a total budget for surveillance effort. The 
currency of the budget is fl exible, though 
it must obviously be measured in the same 
units as the surveillance effort allocated to 
each site.

Calculating the optimal surveillance 
allocation
Hauser and McCarthy (2009) provide the 
equations that optimally allocate surveil-
lance effort under objectives A and B. 
These equations can be solved as formulae 
in the spreadsheet presented here.

Results
The spreadsheet workbook described here 
is available at no charge via email request 
(chauser@unimelb.edu.au).

Selecting an objective   Objectives A and 
B are treated in separate sheets within the 
surveillance planning workbook, titled 
Unconstrained Optimization and Budget-
Constrained Optimization, respectively.

Partitioning a landscape into sites   The 
selection of site size and location is to be 
carried out prior to use of this spreadsheet, 
as described in the Materials and methods. 
Each site in the landscape is represented 
by a row in the Data Entry sheet, and there 
are cells available for entering an individ-
ual identifi er for each site (column A), as 
well as spatial co-ordinates (columns B–C, 
Figure 1).

The probability of weed presence   The 
probability of weed presence for each site 
is entered into column D of the Data Entry 
sheet (Figure 1).

Weed detectability   The value of the ease 
of detection parameter is not intuitive. 
Thus a Detection Function sheet is avail-
able, where a detection parameter value 
can be entered and the consequent detec-
tion response to surveillance effort is plot-
ted (Figure 2). The value of the detection 
parameter for each site is entered into col-
umn E in the Data Entry Sheet (Figure 1).

Detection benefi t   The benefi t of success-
ful detection at each site is entered into col-
umn F in the Data Entry Sheet (Figure 1).

Surveillance budget   Since the surveil-
lance budget parameter applies only to 
objective B, it is entered at the top of the 
sheet optimizing objective B, called Budg-
et-Constrained Optimization (Figure 3).

Calculating the optimal surveillance allo-
cation   Under objective A, where the costs 
and benefi ts of weed surveillance are trad-
ed directly, the optimal surveillance effort 
for each site is treated independently. Data 
are transferred from the Data Entry sheet, 
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and the optimal surveillance allocation is 
calculated in column H (Figure 4).

Under objective B, sites must be priori-
tized as a function of their properties. The 
Budget-Constrained Optimization sheet 
features a ‘Prioritize sites’ button to sort 
site data appropriately, and an error check 
that alerts the user to unsorted data. Once 
data are sorted, the surveillance allocation 
is presented in column W (Figure 3).

Figure 1. A screen capture of the Data Entry sheet in the surveillance 
planning workbook. Columns denote Site ID (A), optional GIS x- and 
y-coordinates (B, C), probability of pest presence (D), surveillance effi cacy 
(E) and benefi t (F).

Figure 2. A screen capture of the Detection Function sheet in the 
surveillance planning workbook. A value of detection parameter λ is 
entered, generating a plot of the probability of detection as a function of 
surveillance effort.

Visualizing results   Though the spread-
sheet does not include automatic plot-
ting features, results can be exported in 
a number of formats for plotting and/or 
mapping. For example, Hauser and Mc-
Carthy (2009) exported surveillance plans 
as comma-separated value (.csv) fi les, then 
imported the fi les into ArcGIS for map-
ping.

Discussion
Hauser and McCarthy’s (2009) model pro-
vides guidance for planning cost-effi cient 
weed surveillance, and is especially useful 
for heterogeneous landscapes where weed 
habitat suitability, dispersal, detection and 
impact are expected to vary across space. 
The spreadsheet described in this paper 
is an accessible medium for using that 
model.

Sites that are recommended for surveil-
lance effort generally have a high probabil-
ity of weed presence, terrain that facilitates 
rapid detection, and large benefi ts associ-
ated with detection during the planned 
survey. The amount of survey effort rec-
ommended increases with probability of 
presence and with detection benefi ts, but 
in a nonlinear manner. Sites that are very 
diffi cult to search will be prioritized for 
survey only if the expected benefi ts are 
very high; in this case a thorough search 
will be recommended. Sites that are easy 
to search are more likely to be prioritized 
for survey, though only at a low effort; this 
will assure a suffi ciently high probability 
of weed detection.

While Hauser and McCarthy’s model 
provides new insight into how cost-effec-
tive weed surveillance should be planned, 
it requires input data that may not always 
be available. Site-specifi c probabilities of 
occurrence (including those derived from 
species distribution modelling), detection 
probabilities, weed impacts and control 
costs are unlikely to be estimated with 
high confi dence. It is therefore important 
to perform sensitivity analyses; fortunate-
ly optimizations within this spreadsheet 
are performed rapidly so it is feasible to in-
vestigate multiple parameter sets and ob-
serve changes in the optimal surveillance 
plan. A more thorough uncertainty analy-
sis of Hauser and McCarthy’s surveillance 
model is planned as a future study.

Surveillance is a vital component of suc-
cessful weed management, yet rigorous 
methods for planning and implementing 
surveillance are only recently emerging. 
The spreadsheet presented in this study 
demonstrates how ecological and econom-
ic modelling can be utilized for planning 
cost-effective surveillance.
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